multi scale image segmentation python
Multi-scale image segmentation is a technique used to partition an image into multiple segments or regions at different scales, which can be useful for various image analysis tasks such as object detection, image recognition, and more. In Python, you can use libraries like OpenCV, scikit-image, and others to perform multi-scale image segmentation.
Here's a basic example using the scikit-image
library to perform multi-scale image segmentation using the Felzenszwalb's efficient graph-based segmentation method:
Install the required libraries:
Make sure you have scikit-image
and matplotlib
installed. You can install them using pip if you haven't already:
pip install scikit-image matplotlib
Perform multi-scale image segmentation:
Here's a sample code to perform multi-scale image segmentation using scikit-image
:
import matplotlib.pyplot as plt
from skimage import data, segmentation, color
from skimage.future import graph
# Load an example image
image = data.coffee()
# Perform Felzenszwalb's efficient graph-based segmentation
segments_fz = segmentation.felzenszwalb(image, scale=100, sigma=0.5, min_size=50)
# Convert the segmented image to a color image
segmented_image = color.label2rgb(segments_fz, image, kind='avg')
# Display the original and segmented images
fig, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
ax[0].imshow(image)
ax[0].set_title('Original Image')
ax[0].axis('off')
ax[1].imshow(segmented_image)
ax[1].set_title('Segmented Image')
ax[1].axis('off')
plt.tight_layout()
plt.show()
In this example:
data.coffee()
function from skimage
to load a sample image.segmentation.felzenszwalb
function.color.label2rgb
.matplotlib
.You can adjust the scale
, sigma
, and min_size
parameters in the felzenszwalb
function to control the segmentation at different scales. Experimenting with these parameters will help you achieve the desired segmentation results for your specific application.