compute normals for point cloud using open3d and poisson algorithm, and write to file
To compute normals for a point cloud using Open3D and the Poisson algorithm, and then write the results to a file, you can follow these steps. Below is a Python script that demonstrates this process:
First, make sure you have Open3D installed. You can install it using pip if you haven't already:
pip install open3d
Now, here is the Python script:
import open3d as o3d
# Load the point cloud from a file
pcd = o3d.io.read_point_cloud("input.ply") # Replace with your input file
# Estimate normals
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
# Perform Poisson surface reconstruction
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9)
# Save the point cloud with normals to a file
o3d.io.write_triangle_mesh("output_with_normals.ply", mesh)
# Optionally, visualize the point cloud with normals
o3d.visualization.draw_geometries([mesh], point_show_normal=True)
Loading the Point Cloud:
o3d.io.read_point_cloud("input.ply")
. Replace "input.ply"
with the path to your point cloud file.Estimating Normals:
estimate_normals
method. The search_param
parameter specifies the radius and the maximum number of nearest neighbors to use for the KDTree search.Poisson Surface Reconstruction:
create_from_point_cloud_poisson
. The depth
parameter controls the depth of the octree used for the reconstruction. A higher depth value results in a more detailed mesh but requires more computation.Saving the Point Cloud with Normals:
o3d.io.write_triangle_mesh("output_with_normals.ply", mesh)
. Replace "output_with_normals.ply"
with your desired output file path.Visualization (Optional):
o3d.visualization.draw_geometries
.Make sure to replace the file paths with your actual input and output file paths. This script assumes that the input file is in PLY format, but Open3D