I have a sparse point cloud of a volume, and I want get the dense and smoothy surface point cloud.
To convert a sparse point cloud into a dense and smooth surface point cloud, you can follow these general steps:
Preprocessing:
Surface Reconstruction:
Postprocessing:
Point Cloud Sampling:
Several tools and libraries can help you with these steps:
Here is a simplified example workflow using PCL in C++:
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/poisson.h>
#include <pcl/surface/texture_mapping.h>
int main(int argc, char** argv) {
// Load point cloud
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile("input.pcd", *cloud);
// Remove outliers
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
sor.setInputCloud(cloud);
sor.setMeanK(50);
sor.setStddevMulThresh(1.0);
sor.filter(*cloud);
// Downsample
pcl::VoxelGrid<pcl::PointXYZ> vg;
vg.setInputCloud(cloud);
vg.setLeafSize(0.01f, 0.01f, 0.01f);
vg.filter(*cloud);
// Estimate normals
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
ne.setInputCloud(cloud);
ne.setSearchMethod(tree);
ne.setKSearch(20);
ne.compute(*normals);
// Concatenate XYZ and normal fields
pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals(new pcl::PointCloud<pcl::PointNormal>);
pcl::concatenateFields(*cloud, *normals, *cloud_with_normals);
// Surface reconstruction using Poisson
pcl::Poisson<pcl::PointNormal> poisson;
pcl::PolygonMesh mesh;
poisson.setInputCloud(cloud_with_normals);
poisson.setDepth(8); // Adjust depth as needed
poisson.reconstruct(mesh);
// Save the mesh
pcl::io::savePLYFile("output.ply", mesh);
return 0;
}
This example demonstrates the basic steps of loading a point cloud, removing outliers, downsampling, estimating normals, and performing Poisson surface reconstruction. You can adjust the parameters and add more steps as needed for your specific application.